iFUM - Improved Fast Utility Mining
نویسندگان
چکیده
The main goals of Association Rule Mining (ARM) are to find all frequent itemsets and to build rules based of frequent itemsets. But a frequent itemset only reproduces the statistical correlation between items, and it does not reflect the semantic importance of the items. To overcome this limitation we go for a utility based itemset mining approach. Utility-based data mining is a broad topic that covers all aspects of economic utility in data mining. It takes in predictive and descriptive methods for data mining. High utility itemset mining is a research area of utility based descriptive data mining, aimed at finding itemsets that contribute most to the total utility. The well known faster and simpler algorithm for mining high utility itemsets from large transaction databases is Fast Utility Mining (FUM). In this proposed system we made a significant improvement in FUM algorithm to make the system faster than FUM. The algorithm is evaluated by applying it to IBM synthetic database. Experimental results show that the proposed algorithm is effective on the databases tested. General Terms Algorithms, Performance, Process, Results.
منابع مشابه
High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences
Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...
متن کاملA New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملA Fast Algorithm for Mining Utility-Frequent Itemsets
Utility-based data mining is a new research area interested in all types of utility factors in data mining processes and targeted at incorporating utility considerations in both predictive and descriptive data mining tasks. High utility itemset mining is a research area of utilitybased descriptive data mining, aimed at finding itemsets that contribute most to the total utility. A specialized fo...
متن کاملAn Efficient Data Structure for Fast Mining High Utility Itemsets
Abstract: High utility itemset mining has emerged to be an important research issue in data mining since it has a wide range of real life applications. Although a number of algorithms have been proposed in recent years, there seems to be still a lack of efficient algorithms since these algorithms suffer from either the problem of low efficiency of calculating candidates’ utilities or the proble...
متن کاملFast and Memory Efficient Mining of High Utility Itemsets Based on Bitmap
Mining high utility itemsets is one of the most important research issues in data mining owing to its ability to consider nonbinary frequency values of items in transactions and different profit values for each item. Although a number of relevant approaches have been proposed in recent years, they incur the problem of producing a large number of candidate itemsets for high utility itemsets. In ...
متن کامل